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This is ct description of research in developing ct natural language processing 

system with modular knowledge sources but strongly interactive processing. 

The system offers insights into o variety of linguistic phenomeno and allows 

easy testing of a variety of hypotheses. Language interpretotion takes place 

on ct activation network which is dynamically created from input, recent con- 

text, ond long-term knowledge. Initially ambiguous and unstable, the network 

settles on 0 single interpretation, using 0 parallel, analog relaxation process. 

We 0150 describe a parallel model for the representation of context ond of the 

priming of concepts. Exomples illustrating contextual influence on meaning 

interpretation and “semantic garden poth” sentence processing, among other 

issues, ore included. 

INTRODUCTION 

The Problem of Integration 

The interpretation of natural language requires the cooperative application 
of many systems of knowledge, both language specific knowledge about 
word use, word order and phrase structure, and “real-world” knowledge 
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about stereo-typical situations, events, roles, contexts, and so on. And even 
though these knowledge systems are nearly decomposable, enabling the cir- 
cumscription of individual knowledge areas for scrutiny, this decomposabil- 
ity does not easily extend into the realm of computation; that is, one cannot 
construct a psychologically realistic natural language processor by merely 
conjoining various knowledge-specific processing modules serially or hier- 
archically. 

These particular forms of process integration, which happen to be 
convenient to use on modern computers, turn out to have a profound effect 
on the mind of the modeler, as Pylyshyn (1980, p. 124) points out: 

Now, what is typically overlooked when we [use a computational system 

as a cognitive model] is the extent to which the class of algorithms that 

can even be considered is conditioned by the assumptions we make re- 

garding what basic operations are possible, how these may interact, how 

operations are sequenced, what data structures are possible, and so on. 

Such assumptions are an intrinsic part of our choice of descriptive for- 

malism. 

AmhiguifJ~. Convenient processing assumptions lead to problems in build- 
ing models for cognition. Consider ambiguity, perhaps the most ubiquitous 
problem in natural language processing. Humans experience an increased 
processing load with ambiguous language (Mackay, 1966), which suggests 
that humans compute multiple readings (at least in some sense). However, 
the “serial frame of mind” allows basically two approaches for dealing with 
ambiguous sentences: backtracking as used in Augmented Transition Net- 
works (Woods, 1970), or delay, as used in Marcus’ (1980) “wait and see” 
parser. And although lexical access appears to be an automatic process co- 
temporal with syntactic and semantic processing (Marslen-Wilson & Tyler, 
1980) most natural language systems still work with small dictionaries and 
simple ad-hoc heuristics which choose word meanings before assigning 
structure.’ 

Single Interpretation. Another interesting phenomenon in language inter- 
pretation is that humans can usually entertain only one interpretation of an 
ambiguous sentence at a time, but can easily “flip” between interpreta- 
tions. Consider the following short sentences which can be interpreted 
either as statements or commands: 

(Sl) Trust shrinks. 
(S2) Respect remains. 
(S3) Exercise smarts. 

The fact that we can interpret the first sentence either as a general statement 
about dwindling confidence or as advice to place one’s faith in psychiatrists, 

’ This, finally, is changing. See Small (1980) or Charniak (1983). 
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suggests that the human capacity to disambiguate language is not unlike the 
faculties involved in visual disambiguation-like foreground/background 
perception of the Necker Cube. 

Comprehension Errors. Errors in comprehension, like Garden Path Sen- 
tences have in the past been explained by purely structural principles like 
early closure (Kimball, 1973) or Minimal Attachment and Right Association 
(Frazier, 1979), or by the breakdown of simple and limited serial mecha- 
nisms (Marcus, 1980; Milne, 1982; Shieber, 1983). However, they have 
more complete and natural explanations as side-effects of strongly interact- 
ing processes as we demonstrate in the section on Errors in Comprehension, 
p. 61. Garden path effects can occur at all levels of language processing. 
Consider the following sentences: 

(S4) The astronomer married the star. (Charniak, 1983) 
(S5) The plumber filled his pipe. 
(S6) The sailor ate a submarine. 

Readers usually report these as “temporarily anomalous,” i.e., as a “se- 
mantic garden path sentence.” A plausible explanation for the cognitive 
doubletake (and mild humor) caused by the first sentence is that the priming 
power of “astronomer” on the wrong sense of “star” is initially stronger 
than the logical power of case frame selectional restrictions; in the end, the 
selectional restrictions force the interpretation of “star” as a person. 

Nongrammafical Text. People are able to interpret nongrammatical lan- 
guage, whether it is naturally occurring (due to poor grammar, foreign 
speakers, noise interference, interruptions, self-corrections, etc.) Most 
work on this topic has taken the approach of relaxing certain contraints in 
the parsing process-in the LSP project (Sager, 1981), a failed parse was 
retried without agreement constraints on syntactic features; in the PLANES 
project (Waltz, 1978), a semantic grammar was used which accepted very 
ungrammatical input as meaningful. Others have formalized the notion of 
constraint relaxation for handling ill-formed input (Goodman, 1984; 
Kwasny & Sondheimer, 1981). We believe that this ability in humans, to 
semi-independently judge meaningfulness and grammaticality, is yet more 
evidence of the modularity of knowledge but the integration of processing. 

Integrating Knowledge Sources 

All these phenomena indicate the need for a theory of language processing 
which posits, instead of the simple passing of semi-complete results between 
processing components, strong interaction between those components; so 
strong, in fact, that all decisions are interdependent. We believe that most 
theories of language processing advanced over the years have been seriously 
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flawed because they have drawn on a limited set of computational ideas 
which cannot effectively deal with interdependent decisions, and because 
of peculiarities of English and the history of linguistics research which have 
led to the assumption of the autonomy of syntax in natural language under- 
standing. 

These observations are, of course, not entirely new. In the early 197Os, 
Schank argued that semantics, not syntax should have the central role in 
programmed theories of natural language processing (Schank, Goldman, 
Rieger, & Riesbeck, 1973; Riesbeck & Schank, 1976). Steven Small (1980) 
was another worker in AI who questioned the traditional serial integration 
of language processing. Small suggested that rather than having separate 
modules for syntax and semantics, each word should be its own expert, and 
built a system of interacting discrimination nets, reminiscent of Hewitt’s 
work on actor formalisms (Hewitt, 1976). Cottrell and Small (1983) have 
published research on interacting distributed processing of word senses, 
case roles, and semantic markers, very similar in spirit to our effort (see sec- 
tion titled “Case Frames and Selectional Restrictions,” pp. 64-65). And, of 
course, the HEARSAY II speech understanding system (Fennel & Lesser, 
1977) used a parallel production system for integrating multiple knowledge 
sources. 

STRUCTURES OF THE MODEL 

We wish to go further than these models of integrated processing; we want a 
machine to make its interdependent decisions smoothly-we want a system 
which runs like an ecological system, rather than like a Rube Goldberg 
device. We have chosen to work with the twin processes of Spreading Acti- 
vation and Lateral Inhibition in which decisions are spread out over time, 
allowing various knowledge sources to be brought to bear on elements of 
the interpretation. 

Spreading Activation and Lateral Inhibition 

The term “Spreading Activation” has been used to describe many different 
programs and models, but all can be basically divided into two classes. Digilal 
Spreading Activation is a class of marker-passing algorithms which perform 
a breadth-first search for shortest paths on a relational network. Analog 
Spreading Activation takes place on a weighted network of associations, 
where “activation energy” is distributed over the network based on some 
mathematical function of the strength of connections. As an example of the 
digital kind, Quillian (1968) describes a technique for finding relationships 
between two concepts stored in a semantic network by repeatedly marking 
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adjacent nodes with “activation tags” containing a path back to the source 
concept. As examples of the analog kind, Collins and Loftus (1975) model 
semantic priming on a network with decaying activation, and, more recently, 
McClelland and Rumelhart (1980) model word recognition on an analog 
spreading activation network. 

Both forms of spreading activation suffer from the danger of “over- 
kill.” In the digital form, this means the problem of false positives, where a 
very large number of uninteresting paths may be found.2 The analog form 
of spreading activation has the potential problem of “heat death,” where 
the entire network becomes uniformly activated. This can be handled with 
some form of damping or decay, or via lateral inhibition, which spreads 
negative energy just as spreading activation spreads positive energy. With 
damping or decay, weights must be carefully chosen to avoid having too 
many or too few portions of the network active. Lateral inhibition seems to 
have fewer disadvantages, and is our method of choice. 

Besides effectively dealing with the problem of overkill, lateral inhibi- 
tion is useful for the coordination of distributed decisions. According to 
Feldman: 

Lateral inhibition at lower organizational levels is one of the most ubiq- 
uitous information-processing mechanisms in animals: it is essential that 
opposing action systems do not execute simultaneously. Low-level 
visual processing makes very heavy use of mutual lateral inhibition, and 
this appears to be true for other sensory systems as well (1981, p. 52). 

Consider a graph with weighted nodes and links, and an iterative 
operation which recomputes each node’s activation level (i.e., its weight) 
based on a function of its current value and the inner product of its links the 
activation levels of its neighbors. An activation (positive) link between a 
pair of nodes will cause them to support each other while an inhibition 
(negative) link will attempt to allow only one of the pair to remain active at 
any given time.’ The net effect is that, over several iterations, a coalition of 
well-connected nodes will dominate, while the less fortunate nodes (those 
which are negatively connected to winners) will be suppressed. 

We exploit this behavior several ways in our parser: by putting inhibi- 
tory links between nodes which represent well-formed phrases with shared 
constituents (which are, thus, mutually exclusive), we ensure that only one 
will survive. Similarly, there are inhibitory links between nodes representing 
different lexical categories (i.e., noun or verb) for the same word; between 

I Quillian recognized that this was a problem for preposition words in his network, and 

used a simple heuristic of avoiding paths through dense clusters to circumvent it (1968, p. 156). 

Charniak (1983, p. 188) discusses a similar heuristic. 

’ The pair may, under certain circumstances, balance each other; both may have zero 

activation simultaneously. 
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concept nodes representing different senses of the same word (i.e., subma- 
rine as a boat or as a sandwich); and between nodes representing conflicting 
case role interpretations. There are activation links between phrases and 
their constituents, between words and their different meanings, between 
roles and their fillers, and between corresponding syntactic and semantic in- 
terpretations. The net effect is that, over several iterations, a coalition of 
nodes representing a consistent interpretation will dominate, while the less 
fortunate nodes will be suppressed. 

Integration by Parts 

While we have not yet built an entire language processing system, we have 
done several computational “experiments,” modeling various components 
of comprehension, as well as certain interactions between them. We will 
describe the different components we have modeled with activation and in- 
hibition and how they fit together. The figures in this section have nodes 
represented by named and shaped shapes-the darker the shade, the higher 
the activation level. Activation links are shown with arrowheads, while inhi- 
bition links end with small circles. All the figures are snapshots taken of a 
system which runs a proportional update activation function, the same as 
McClelland and Rumelhart’s (1980) scheme, on a range from 0.0 to 1.0 
without decay. All activation links are at + .2 and all inhibition links at 
- .45. 

Lexical rlccess and Priming. One of the earliest uses for spreading activa- 
tion was to model semantic priming (Collins & Loftus, 1975; Ortony & 
Radin, 1983). It is very natural to think in terms of weighted connections 
between related concepts as being responsible for the “associations” that 
drive the facilitation of word meanings in context. AI models, with the ex- 
ception of Small’s (1980) Word Expert Parser, have basically ignored this 
aspect of language processing as “lower than syntax,” and have usually 
called a subroutine to pick out the lexical category and meaning of a word 
upon demand. 

Both approaches are a little off. Recent evidence about lexical access 
(Seidenberg, Tanenhaus, & Leiman, 1980; Swinney, 1979) shows that when 
a word is encountered, all its meanings are facilitated (phase 1) but then 
rapidly, the local semantic and syntactic context eliminate all but the “cor- 
rect” one (phase 2). Spreading activation can easily be responsible for phase 
1, but it provides no way to achieve phase 2; opportunistic selection by sub- 
routine call can, in many cases, pick out the right lexical item, but does not 
accurately model the automatic process humans do. Using lateral inhibition 
between competing word senses, and between word senses and the local syn- 
tactic and semantic context, can effectively simulate the two stage hypothe- 
sis without two processing stages. 
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Figure 1 shows a four-level activation network for the sentence: 

(S7) John shot some bucks. 

Figure la shows the initial state, and lb shows the network after about 50 
cycles. The first level shows a syntactic parse tree for the sentence, the sec- 
ond level shows the input words, the third level shows a cluster of meanings 
for each word with mutual inhibition links between all the meanings, and 
crossed activation and inhibition links between the lexical categories and the 
meanings. For example, the input word “shot” is connected to four senses: 

1. 
2. 

3. 
4. 

TIRED-an adjective, approximately meaning4 “worn out” 
FIRE-a past-tense verb, approximately meaning “to shoot with 
gun” 
BULLET-a noun, approximately meaning “unit of ammunition” 
WASTE-a verb, approximately meaning “squander a resource” 

The fourth level, in large italics, represents an image of a context sys- 
tem which is discussed in the section titled “Context: Introduction” on p. 
65. Its purpose is to coordinate sense selection along the sentence. 

---------------- --------------------- 

WNltXIUU 

Figure la. Initial Network for “John shot some bucks” in the context of hunting. 

’ The nodes in this diagram, and in this paper in general are intended to have a 

schematic internal representation. We see the behavior of our networds as a coarse description 

of an even larger, more parallel representation of vzhemata and semantic features. 
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Figure 1 b. Network after 50 cycles of spreading activation and lateral inhibition. 

‘“u’ I Irn WU” 811LLk I . . . . . 

Figure lc. Graph of the activation profile of “shot” and several of its senses. The horizontal 

axis represents time, in cycles (and no claims are being made at this paint far a mapping to 

milliseconds), and the vertical axis represents activation levels. 

The activation of this network (by an unshown auxiliary network 
which sequences the words) yields an interesting profile of the processing of 
“John shot some bucks” in the context of hunting. The graph in Figure lb 
shows the activation profiles over time of the word “shot” and some of its 
meanings. Meanings are activated immediately after the word, and the syn- 
tactic demand for a verb, along with the contextual pressure of hunting, 
lead to the rapid demise of all but the “FIRE” sense of “shot.” 
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Syntax--Autonomy and Integrafion. It is clear that humans can make rela- 
tively autonomous judgements about the grammaticality and meaningful- 
ness of sentences. This is clearly demonstrated by the ability to assign struc- 
ture to nonsense sentences such as: 

(S8) Colorless green ideas sleep furiously.’ 

as well as to assign some meaning to ungrammatical strings. The autonomy 
of syntax is important because it allows a very complex element of natural 
language to be studied in isolation from other elements. Unfortunately, it 
has been misunderstood at an implementational level, with programmers 
having drawn the wrong conclusion: that natural language can be processed 
by a “syntactic faculty”6 that assigns structure before meaning. This mis- 
understanding and the failures that accompanied it, along with the early 
successes of meaning-primitive based systems (Schank et al., 1973), have led 
many AI researchers to assume a “rejectionist” position with regard to syn- 
tax.’ 

Obviously, syntax is not the framework upon which an entire NLP 
system should be based, but neither should it be dispersed into the farthest 
reaches of subroutine calls. We put syntax on an equal footing with other 
sources of language knowledge. Notice that the misunderstanding of syn- 
tactic autonomy stems from the intellectual bottleneck of serial processing 
discussed earlier-when computations must be serialized, some decisions 
must be made before others. In a parallel and strongly interactive frame- 
work, syntax can be integrated in such a way as to allow relatively indepen- 
dent judgements of grammaticality, as well as to influence and be influenced 
by judgements of meaningfulness. 

Our approach to relatively independent syntactic processor (Pollack & 
Waltz, 1982) is based on merging ideas from breadth-first chart parsing 
(Kay, 1973) with parallel relaxation by lateral inhibition. The output from a 
chart parser for a context-free grammars is taken to be a network with acti- 
vation links between mother and daughter nodes, and inhibition links be- 
tween “in-laws”-nodes which both dominate a common daughter. When 
the network is iterated, it seeks an equilibrium state with an active coalition 
of phrase-markers representing a well-formed parse. 

Figure 2 shows two stable states of a network representing the parses 
of the sentence 

(S9) John ate up the street. 

’ From Chomsky. (1957, p. 15). 

’ See Fodor (1982) for a history of faculty theories of mental abilities. 

’ Though a comeback of sorts seems to be underway-see Berwick, (1983). 

’ Although common wisdom says that CFG’s are inadequate to represent the syntax of 
natural languages, recent work on Generalized Phrase Structure Grammars (Gazdar & Pullum. 

1982) holds the promise of overcoming the inadequacies. 
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The network settles on one of the states based on the initial node and link 
weights, and on any external activation or inhibition applied to the nodes, 
i.e., from the lexical or semantic level. The important thing to note is that 
there is no “homunculus” searching for a consistent tree, just a local com- 
petition for superiority. The weighting scheme where the words are activated 
sequentially from left to right prefers to settle on the shortest tree it can 
find, Figure 2a. 

Figure 2. Stable coalitions of the ambiguous syntax of “John ate up the street.” The reading 

of “up” in 2a (John ate all of the ospholt) is preferred but semantic information con easily 

overcome this preference. 
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There has been a great deal of research into exactly how the “human 
syntactic processor” works. Data on which decisions humans make in the 
structural interpretation of sentences in null contexts have generated many 
principles and strategies for parsing (Frazier, 1979; Ford, Bresnan, & Kap- 
lan, 1982; Kimball, 1973), and this data has been used as validation of a 
whole host of grammatical formalisms and parsing mechanisms, including 
the Sausage Machine (Frazier & Fodor, 1978) ATN’s (Wanner, 1980), and 
different varieties of deterministic parsers (Church, 1980; Marcus, 1980; 
Mime, 1982; Shieber, 1983). There are a number of problems with building 
a syntactic parser to explicitly encode these strategies as the starting point 
for a language understanding system. We list three major ones here. First, 
humans can understand sequences of words with ill-formed syntactic struc- 
ture. Second, when beginning with a syntactic parser, there is no good way 
to smoothly integrate semantic and lexical strategies, so the different strate- 
gies are usually subjugated to the status of subroutines called by some con- 
trol program of dubious psychological and linguistic credentials (Winograd, 
1972). Third, since garden path sentences.have been taken as validation of 
the structural principles, it would be good if they always caused humans to 
garden path. Not so, Crain and Steedman (1981) have shown how easy it is 
to prevent backtracking by adding context to garden path sentences. For ex- 
ample, if 

(SIO) Cotton is grown in several of the Southern States. 

precedes 

(Sll) The cotton clothing is made uf is grown in Mississippi. 

the latter is no longer a garden path sentence. 
Since structural preferences are apparently so much weaker than other 

contextual forces, is it not better to view them as side-effects of the organi- 
zation of the syntactic processor, rather than as global guiding principles? 
In a parallel parser such as the one described above, preferences between 
competing phrases are a side-effect of lateral inhibition; the global guiding 
principle is the “universal will to disambiguate.” 

It is interesting to note that although our model is motivated by con- 
siderations of strong interaction, the syntactic modeling is closely related to 
the HOPE program of Gigley (1982) which was motivated by the neurolin- 
guistic concerns of modeling aphasiac language degradation. Currently, 
however, we have no goals of lobotomizing our program to see how it de- 
grades (but see Marcus, 1982 for one such experiment). 

Errors in Comprehension. Because our system operates in time, we are able 
to model effects that depend on context, and effects that depend on the ar- 
rival time of words. Consider the network shown in Figure 3, which shows 
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three snapshots taken during the processing of a sentence that induces a 
“cognitive doubletake”: 

(S4) The astronomer married a star. 

Figure 30. Cycle 27 of “The astronomer married the star , “. CELES-BODY seems to hove won. 

Figure 3b. Cycle 42; MOVIE-STAR has caught up. 
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Figure 3 includes three possible meanings for “star,” namely (1) MOVIE- 
STAR-the featured player in dramatic acting, or (2) CELES-BODY-a 
celestial body, or 3) GEOM-FIG-a pentagram. We presume that “astrono- 
mer” primes CELES-BODY by the path of strong links: astronomer-AS- 
TRONOMER- ASTRONOMY - CELES-BODY, but that MOVIE-STAR 
would be primed very little, if at all, because the its activation via the dis- 
tributed context model would be very small. When the word “star” is en- 
countered, the meaning CELES-BODY is initially highly preferred and 
seems to have won the competition (Figure 3a), but eventually, since CELES- 

Figure 3c. Cycle 85; CELES-BODY has last to MOVIE-STAR; consistency reigns. 

I  21 4e 0, I ” .  

MOVIE-STAR CELES-BODY 

Figure 3d 
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BODY is inanimate, whereas the object of MARRY should be human and 
animate, the MOVIE-STAR meaning of “star” catches up (Figure 3b) and 
wins out (Figure 3~). 

In Figure 3d we show the activation levels for CELES-BODY and 
MOVIE-STAR as functions of time. One can see that the activation of 
CELES-BODY is initially very high, and that only later does MOVIE-STAR 
catch up to and eventually dominate it. We argue that, if activation level is 
taken as a prime determinant of the contexts of consciousness, then this 
model captures a common experience of people when hearing this sentence. 
This phenomenon is often reported as being humorous, and could be con- 
sidered a kind of “semantic garden path.” It should be emphasized that this 
behavior falls out of this model, and is not the result of juggling the weights 
until it works. In fact, the examples shown in this paper work in an essen- 
tially similar way over a broad range of link weightings. 

Case Frames and Selectional Restrictions. Figure 3 includes some large 
square nodes at the bottom. These large boxes, representing case frames ac- 
tivated by “ASTRONOMER” and “MARRY”, actually correspond to sub- 
stantial structures of nodes and links, in basic agreement with the “exploded 
case frame” of Cottrell and Small (1983). Specifically, each case frame in- 
cludes role slots, specific to the case frame: “MARRY” is attached via acti- 
vation links to “MARRY-AGENT” and “MARRY-OBJECT” nodes, and 
these are each attached to semantic marker nodes for “HUMAN.” 

A scheme also is required to attach specific words, e.g., “astronomer,” 
to roles as well as to the contexts of long-term memory. Finally, if the sen- 
tence’s meaning is to be remembered, a scheme is necessary for dynamically 
connecting the active semantic and pragmatic nodes to long-term memory. 
All these schemes, in our view, require that there be (a) a way of collecting 
all active nodes, (b) a way of attaching the nodes to some other node (or 
nodes) unique to the set of active nodes, such that (c) the set of active nodes 
could be reactivated by activity of subsets of the set of nodes. Two methods 
for accomplishing this are Minsky’s use of “K-lines” (Minsky, 1980) and 
Hinton’s use of “microfeatures” (Hinton, 1981). The basic idea in both 
cases is that some node (“agent” for Minsky) or portion of a state vector 
(Hinton) is associated with specific activated nodes, and either bidirectional 
links (Minsky) or autoassociative hardware (Hinton) is used to recover the 
whole from any sufficiently large part. 

Furthermore, we believe that each basic meaning node for a verb 
should itself be a composite structure: “eat,” for instance, can be decom- 
posed into schemas for moving food to a mouth, chewing, swallowing, and 
so on. Some ideas along these lines are explored in the section of DeJong 
and Waltz (1983) on “event shape diagrams.” These diagrams can be viewed 
as plotting activation levels of such “microschemas.” Ultimately, schemas 
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should connect to even more detailed mechanisms for producing the ex- 
perience of mental images (Waltz, 1979). 

Context: Introduction 

Earlier (in Figure 1) we used “context-setting” nodes such as “HUNT” and 
“GAMBLE” to prime particular word and phrase senses, in order to force 
appropriate interpretations of a noun phrase. There are, however, major 
problems that preclude the use of such context setting nodes as a solution to 
the problem of context-directed interpretation of language. A particular 
context-setting word, e.g., “hunting,” may never have been explicitly men- 
tioned earlier in the text or discourse, but may nonetheless be easily inferred 
by a reader or hearer. For example, preceding (Sl) with: 

(S12) John spent his weekend in the woods. 

should suffice to induce the “hunting” context. Mention of such words or 
items as “outdoors,” “hike,” “campfire,” “duck blind,” “marksman,” 
and so on, ought to also prime a hearer appropriately, even though some of 
these words (e.g., “outdoors” and “hike”) are more closely related to 
many other concepts than to “hunting.” We are thus apparently faced with 
either (a) the need to infer the special context-setting concept “hunting,” 
given any of the words or items above; or (b) the need to provide connec- 
tions between each of the words or items and all the various word senses 
they prime. There is, however, a better alternative. 

We propose that each concept should be represented not merely as a 
unitary node, but should in addition be associated with a set of “microfea- 
tures” that serve both (a) to define the concepts, at least partially, and (b) to 
associate the concept with others that share its microfeatures. We propose a 
large set of microfeatures (on the order of a thousand), each of which is 
potentially connected to every concept node in the system (potentially on 
the order of hundreds of thousands). Each concept is in fact connected to 
only some subset of the total set, via either bidirectional activation or bidi- 
rectional inhibition links. Closely related concepts have many microfeatures 
in common. The microfeatures are intended to be part of a module that can 
be driven by perception, language input, and memory. 

We suggest that microfeatures should be chosen on the basis of first 
principles to correspond to the major distinctions humans make about situ- 
ations in the world, that is, distinctions we must make to survive and thrive, 
and major divisions of history, geography, and topic. For example, some 
important microfeatures correspond to distinctions such as threatening/safe, 
animate/inanimate, edible/inedible, indoors/outdoors, good outcome/ 
neutral outcome/bad outcome, moving/still, intentional/unintentional, 
characteristic lengths of events (e.g., whether events require milliseconds, 
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hours, or years), locations (particular cities, countries, continents, etc.) and 
historical times (dates or periods). As in Hinton’s (1981) model, hierarchies 
arise naturally, based on subsets of shared microfeatures, but are not the 
fundamental basis for organizing concepts in a semantic network, as in 
most AI models. 

Microfeatures as a Priming Context-An Example. Let us see how micro- 
features could help solve the problems presented by the example from Figure 
1. Figure 4 shows a partial set of microfeatures, corresponding to temporal 
event length or location type (setting) running horizontally. A small set of 
concepts relevant to our example is listed across the top. Solid circles denote 
strong connection of concepts to microfeatures, open circles, a weak con- 
nection, and crosses, a negative connection. A simple scoring scheme allows 
“weekend” and “outdoors” to appropriately prime concepts related to 
“fire at” and “deer” relative to “waste money” and “dollar,” as well as 
the ability of “casino” or “video game” to induce an opposite priming ef- 
fect, as shown in Figure 4b. It is interesting to compare these effects with 
the effects of priming with “hunting” or “gambling” directly. No relaxa- 
tion was used, though it obviously could be (i.e., a concept could activate 
microfeatures, priming other concepts, and then the primed concepts could 
change the activation of the microfeatures, in turn activating new concepts 
and eventually settling down.’ We have been experimenting with a number 
of possible weighting and propagation schemes, and have built up a much 
larger matrix than the one shown in Figure 4. 

Microfeatures and Context. Ideally, the particular set of microfeatures as- 
sociated with a concept should serve two purposes: (1) it should be sufficient 
to distinguish the concept from all others, and (2) it should have shared 
microfeatures with all the concepts that should be associated with the given 
concept, but that are not related to in the ways that we would generally class 
as common “free associations” or n-ary relations. The set of microfeatures 
is thus partially definitional, but there is strictly speaking, no such thing as a 
complete definition for a concept in our model. In this regard the microfea- 
tures resemble the primitives used by Wilks in his “preference semantics” 
(1975). This view is also similar to that expressed in Minsky (1977), that is, 
that concepts are defined by their positions in a network, i.e., the things to 
which they are connected. 

We have represented all possible microfeatures as a vector, where each 
position of the vector corresponds to an independent microfeature, and the 
numerical value at that position corresponds to the level of activation of 

’ We have tried hard to be fair in contructing Figure 4a, for example priming with “out- 

door” rather than “woods,” and including links between “casino” and “desert” to acknowl- 

edge Las Vegas. Time periods characterize event lengths. Locations are to be taken as settings 

or surroundings, no/ objects. All links are clearly culturally dependent though, we think, 

roughly in accord with current middle-class American language usage, 
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that feature. One might think that some microfeatures ought to be directly 
connected to each other by mutually inhibitory link or mutually activating 
links; for example “outdoor” and “indoor” microfeatures tend to be 
mutually inhibitory. However, both the features “indoor” and “outdoor” 
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Figure 4a. This figure illustrates the use of microfeatures to provide contextual priming. At 

any given time, microfeatures will display same pattern of activation. Each concept has an 

induced activation level as a result of the micrafeature octivatian values. The micrafeature 

activations are modified whenever o concept is primed. 
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Fraction of Moximum Possible Score 

lnstontoneous priming effects on concepts: numbers show fraction of maximum 
possible score induced by the priming concepts. Microfeotures stort at 0. and 

undergo o single priming cycle 

Primed Conceots 

Priming 

Concepts Fire-at Waste Deer DOfh 

Weekend 

Outdoors 

Casino 

Video Games 

Weekend + 

.41 .55 0 .46 

.41 0 .44 .00 

.05 .59 0 .42 

.18 .36 0 .19 

Outdoors .41 .07 .25 .12 

Hunting .36 0 .50 0 

Gambling .09 .59 0 30 

Figure 4b. For our example, assume “weekend” is primed, with all microfeatures initially at 

0. The top line of Figure 4b shows the activation levels of concepts where the number repre- 

sents a fraction of the maximum possible activation for that concept. These values prime 

various word sense nodes differentially. 

in the sense we wish to use microfeatures may be present in varying degrees: 
for example, a room with big picture windows would have a high value for 
indoors, but a nonzero value for outdoors, while a dense forest or space 
under an umbrella would have a high value for outdoors, but a nonzero 
value for indoors, due to perceptual enclosure and partial protection above. 

Only a subset of the possible combinations of microfeature values can 
ever occur as contexts; although a perceptual system could in principle in- 
duce any values for the microfeatures in a full system, the real world in fact 
behaves in an orderly manner, so that only certain value combinations 
would actually be observed. Characteristic constellations of microfeature 
values may occur frequently or persist through time.‘O Such constellations 
divide the world into classes of background situations that correspond to 
context-setting concepts, such as “hunting,” “gambling,” “working in an 
office,” or “bargaining.” 

The microfeature vector could be primarily driven by a memory sys- 
tem rather than by the perceptual system, as in vivid remembering, or in 
planning. While the microfeatures are primarily determined by the need to 
form subsets of possible situations and actions, in practice the microfea- 

I0 Contexts ought IO be much more persistem than individual sentence meanings, which 

in Iurn ought to be much more persistent than syntactic constructs. For example, a single noun 

phrase-recognizing mechanism may need 10 be reused several times in processing a sentence, 

and thus would have to be rapidly deactivated as soon as its results (e.g., a case role entry) were 

%ored or passed to other mechanisms. For related ideas, see Woods’ paper on cascaded ATN’s 

(Woods, 1980). 
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tures would probably become the organizing principle of all other memories 
as well. 

Because of memory and perceptual constraints, it would not be possible 
to have more than a small number of context-settings represented at once in 
the vector. Most typically, one context-setting at a time is represented: at 
least three would be needed in a situation where one is, say, planning in an 
imagined future, while living in the present, using a remembered context- 
setting for help in planning or in coping with the present. Two or three con- 
texts would be needed for understanding my interaction with another person, 
one for my own world view, and one for the other person’s view of the 
world including me. If the other person’s view of me is well-enough known 
and sufficiently different from my own view of myself, I would need at least 
three contexts: (1) myself, (2) the other person, and (3) the other person’s 
model of me.” 

Deeper embeddings would thus of necessity be hard: e.g., “my repre- 
sentation of the model of the other person that the other person believes 1 
hold.” Interactions of three or more people would also be hard for us to 
model in this view, in keeping with the observation that with larger groups 
we tend not to model each individual, but to divide up the larger groups into 
subgroups, “us” and “them,” the “good guys” and the “bad guys,” 
“allies,” who “see eye-to-eye,” that is, who tend to share a world view/ 
context, and “enemies,” whose views/contexts differ (Wilks & Bien, 1983). 

THE NEED FOR NEW ARCHITECTURE 

Besides the evidence and phenomena which suggest a strongly integrated 
model for natural language, there is another reason we are looking towards 
a parallel model. Computer scientists, like cognitive scientists, tend to be 
limited by the conceptual framework of serial processing, the 30-year-old 
framework of the “von Neumann” machine, with its Central Processing 
Unit connected to its passive array of memory by a small bundle of wires. 

” Presumably, as infants we can support only a single context, the egocentric one. 

Development of the ability to simultaneously support more than one context comes later, and 

may be the result of dividing the context vector into two subsets, each of which is reasonably 

complete, but which (I) can be separately activated as a whole, and (2) can support different 

activation patterns. Mechanisms for this could arise gradually, by processes such as reifying 

groups of microfeatures that frequently occur simultaneously. If we assume that activated 

microfeatures are sparsely scattered through the microfeature vector, it would be possible to 

support two or more separate contexts (e.g., me playing, mother reading). Alternatively, we 

may learn to “identify with” others, and use a single set of egocentric microfeatures to simu- 

late their contexts. We hope our views may eventually have interesting connections to the ideas 

of Freud, Piaget, and others, but more than a footnote is premature at this point. 
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Backus addresses this problem in his 1977 Turing Lecture,‘* partially titled 
“Can Programming be Liberated from the von Neumann Style?“: 

Conventional programming languages are basically high-level, complex 

versions of the von Neumann computer. Our thirty year old belief that 

there is only one kind of computer is the basis of our belief that there is 

only one kind of programming language, the conventional-von Neu- 

mann-language.. .(Backus, 1978, p. 615). 

Our fixation on von Neumann languages has continued the primacy of 

the von Neumann computer, and our dependency on it has made non- 

von Neumann languages uneconomical and has limited their develop- 

ment. The absence of full scale, effective programming styles founded 

on non-von Neumann principles has deprived designers of an intellectual 

foundation for new computer architectures (Backus, 1978, p. 616). 

Backus’s challenge, then, is to devise methods of computing which 
overcome the intellectual bottleneck in which both cognitive and computer 
scientists are stuck. 

We have been consciously trying to answer Backus’ challenge, by al- 
ways informing our model with the constraints of “realizable parallelism.“” 
Following in the footsteps of Fahlman, who devised a special purpose parallel 
processor for intersection search on a semantic network (Fahlman, 1979), and 
Hillis, who designed and is now building the Connection Machine (Hillis, 
1981), we have designed two parallel communications architectures for 
modeling activation networks (Debrunner, 1983; Pollack, 1982). 

CONCLUSION 

We have only scratched the surface of dynamic connectionist models for 
language interpretation. The ideas have a long history in psychology, but a 
very sparse history of computer implementation. Spreading activation.and 
lateral inhibition provide a good framework for embedding comprehension 
phenomena which cannot even be approached with binary serial models. We 
have shown that disparate knowledge sources can be smoothly integrated 
and can be brought to bear simultaneously on the natural language process- 
ing task. While it is clearly very crude as a cognitive model, our microfeature 
and concept array is a beginning toward a system which has the (correct) 
property of understanding an input utterance as “a ‘perturbation’ to an 

I* (Backus. 1978, pp. 615-616). The Turing Award is the highest honor given each year 

by the Association for Computing Machinery. 

” By “realizable parallelism,” we mean the communication and computation con- 

straints from parallel computer architecture. It makes little sense to design a parallel machine 

in which a million processors can execute concurrently, but all have to queue up to access a cen- 

tral memory bank. Similarly, one cannot posit a communications network based on a tremen- 

dous crossbar switch, or use parallelism to solve an NP-hard problem in unit time! 
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ongoing cognitive system that is trying to make sense of things” (Winograd, 
1981, p. 245). We have also shown that structural preferences such as Mini- 
mal Attachment (Frazier, 1979) can be understood as side-effects of, rather 
than as strategies for, a syntactic processor, and that hypotheses about lexi- 
cal disambiguation in context (Seidenberg, et al., 1980; Swinney, 1979) can 
nicely fit into a model with lateral inhibition while it could not be accounted 
for by activation alone. Garden-paths at different levels of processing can 
be explained by the breakdown of a common approximate consistent label- 
ing algorithm-Lateral Inhibition-the “Universal Will to Disambiguate.” 

Questions that still need answering include: 

What representation system underlies (and causes) activation and in- 
hibition links? We believe at this time that they may be based on dis- 
criminators among a distributed set of “microfeatures” of much 
finer grain than those used in this paper (Hinton, 1981). 

2. How can a network be dynamically generated without expanding the 
system’s power to an unreasonable degree? Obviously, a production 
system could be used in the manner of the READER system (Thiba- 
deau, Just, & Carpenter, 1982) or ACT* (Anderson, 1983), but we 
feel that the shared “blackboard” is a bottleneck to massive parallel- 
ism (See, for example the analysis of HEARSAY I1 by Fennel1 and 
Lesser, 1977.) Clearly, some dynamic generation is needed to deal 
with the problems of embedding and crosstalk. The only approaches 
we know of for dynamic construction of activation networks are 
Feldman’s Dynamic Connections (1982) and McClelland’s CIP 
(1984, pp. 113-146), but for pragmatic reasons in our experiments we 
have used “normal” computer programs to generate and connect up 
pieces of our networks. 

Generally, we are very excited about the distributed approaches to 
cognitive modeling which have been on the rise in the past few years, and 
hope that this paper contributes to their ultimate ascendency. 
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